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The time-periodic phenomena occurring at low Reynolds numbers (Re  5 180) in the 
wake of a circular cylinder (finite-length section) are well modelled by a Ginzburg- 
Landau (GL) equation with zero boundary conditions (Albarede & Monkewitz 
1992). According to the GL model, the wake is mainly governed by a rescaled length, 
based on the aspect ratio and the Reynolds number. However, the determination of 
coefficients is not complete: we correct a former evaluation of the nonlinear Landau 
coefficient, we show difficulties in obtaining a consistent set of coefficients for different 
Reynolds numbers or end configurations, and we propose the use of an ‘influential’ 
length. New two-point velocimetry results are presented : phase measurements show 
that a subtle property is shared by the three-dimensional wake and the GL model. 

Two time-quasi-periodic phenomena - the second mode observed for smaller aspect 
ratios, and the dislocated chevron observed for larger aspect ratios - are presented and 
precisely related to the GL model. Only the linear characteristics of the second mode 
are readily explained; its existence depends on the end conditions. Moreover, through 
a quasi-static variation of the length, the second mode evolves continuously to end cells 
(and vice versa). Observations of the dislocated chevron are recalled. A very similar 
instability is found on the chevron solution of the GL equation, when the model 
parameters (q, c,) move towards the phase diffusion unstable region. The early stages 
of this instability are qualitatively similar to the observed patterns. 

1. Introduction 
1.1. Review 

A fluid of viscosity v is forced at a steady and uniform velocity V, around a circular 
cylinder of diameter d, the direction of the free flow being perpendicular to the axis of 
the cylinder. When increasing the Reynolds number Re = V, d/v above some critical 
value usually close to 50, a time-periodic oscillation, eventually leading to vortex 
shedding is observed: this is the BCnard-von Karman instability, as it has been 
known for about a century. In the 1 9 5 0 ~ ~  Tritton (1959) noticed that in the range 
70 < Re < 90, the flow became time-quasi-periodic, he attributed the onset of a second 
frequency to a different regime of essentially two-dimensional shedding (see also 
Tritton 1971). 

However, comparing Tritton’s (1959) visualizations and velocity traces with work 
performed since then (e.g. Gerrard 1966, 1978 and Gaster 1969, 1971) leaves no doubt 
that he observed a three-dimensional wake, with spanwise cells oscillating at distinct 
frequencies and separated by vortex dislocations. In fact, even time-periodic wakes are 

t Present address: Centre d’Etude de Cadarache 13108 St Paul les Durance, France. 
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hardly two-dimensional because the vortex lines are not parallel to the cylinder. 
Gerrard (1978) reported oblique shedding, consisting of straight and parallel vortices, 
but not in the cylinder direction, while Hama (1957) and Slaouti & Gerrard (1981) 
observed parenthesis-shaped vortices. Sometimes, three-dimensional vortices break, 
producing cells and time quasi-periodic fluctuations. The explanation of these various 
three-dimensional effects has motivated many papers over the past thirty years. 

Gaster (1969. 1971) obtained a second frequency and bent vortices by imposing a 
non-uniform basic flow. He observed that a discontinuity in the frequency-velocity 
relation occurred when the dislocation between two cells moved across the probe. He 
did not prove in any way that a uniform flow should be free of quasi-periodicity : indeed, 
he could not get rid of the second frequency, even though the flow was apparently 
uniform (Gaster 1971). 

Body vibrations are a quite confusing effect, which Berger (1967) treated very early, 
and applied to wake control. Berger & Wille (1972) reviewed numerous contradictory 
experiments. Sreenivasan (1985), seeking an example for some general features of 
transition to turbulence, observed windows of chaos in a wake. Van Atta & Gharib 
(1987) revealed that aero-elastic coupling was involved in his observations. Their 
‘measurements suggest that if there were absolutely no vibration a Strouhal-Reynolds 
number [frequency-velocity] plot would have absolutely no discontinuities’. 

In practical situations, only a finite length L is available ( L  is precisely defined in 
$3.2). This fact was often overlooked, and the importance of the end configuration and 
the aspect ratio L / d  was only slowly recognized. Slaouti & Gerrard (1981) ‘found that 
the wake structure was strongly affected by the flow configuration near the ends of the 
body, which itself depended entirely on the constraints imposed by the end 
construction’. More precisely, Gerich & Eckelmann (1982) identified end cells in the 
cases of an end plate (with a boundary layer) and of a free end (with a pressure short 
circuit around the tip, increasing the base pressure). 

During the 1980s, the original ideas of Landau (see Landau & Lifchitz 1971) were 
applied successfully to the Benard-von Karman instability (Mathis 1983 ; Mathis, 
Provansal & Boyer 1984a; Strykowski 1986; Provansal, Mathis & Boyer 1987; 
Provansal 1988). The Landau model allocates only two degrees of freedom to the wake, 
corresponding to the complex amplitude of the unique unstable mode, and proposes 
a simple equation for the complex amplitude. 

The understanding of the instability was greatly improved by a simple observation : 
not too close to the body, the flow is almost parallel (to the free flow). This approach 
benefits from the relative simplicity of the parallel-flow stability analysis. The global 
stability properties of the wake were related to the local stability properties of the 
velocity profiles at different streamwise locations (Monkewitz 1988; Huerre & 
Monkewitz 1990). Some five diameters downstream from the circular cylinder, in an 
area called ‘wave maker’, local disturbances grow, leading to self-sustained 
oscillations : the Benard-von Karman instability is an absolute instability, and the 
Landau model is relevant. 

However, the zero-dimensional Landau model is unable to explain three-dimensional 
or time-quasi-periodic effects. For small aspect ratios ( L / d  5 20), the most prominent 
effects are the dependence of the Landau model parameters - including the critical 
Reynolds number Re, - on the aspect ratio, the dependence of the oscillation 
amplitude on space coordinates, and the onset of a second mode (Mathis 1983; Mathis, 
Provansal & Boyer 1984a, b). Since 1988, many detailed and valuable observations on 
large aspect ratio wakes have been reported (e.g. Williamson 1988, 1989; Konig. 
Eisenlohr & Eckelmann 1990; Lee & Budwig 1991 ; Noack, Ohle & Eckelmann 1991 ; 
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Leweke, Provansal & Boyer 1993). In particular, for large aspect ratios ( L / d  2 20), 
Williamson (1989) showed that the end effect propagated from the end along the whole 
span, imposing various three-dimensional effects, including a chevron pattern, without 
either flow non-uniformity or vibrations. 

Albarede, Provansal & Boyer (1990) introduced a one-dimensional G L  model, 
reproducing many three-dimensional effects. This model was required firstly, to be 
coherent with the experiments backing the Landau model (a kind of ‘correspondence 
principle’); secondly, to represent the spanwise coupling, which seems to be the major 
principle of pattern selection in this problem. Similar studies were performed by Gaster 
(1 969) (without the present mathematical and computational possibilities), Noack 
et al. (1 99 l), Papangelou (1992), Chiffaudel(l992), with variations, like a flow profile, or 
a Van der Pol oscillator instead of a Landau oscillator. According to Le Dizes. 
Monkewitz & Huerre (1992), the GL equation can be deduced from the Navier-Stokes 
equations as an asymptotic expansion. 

Once the GL model and some of its strikingly realistic features were revealed, a more 
systematic and quantitative test was undertaken. The first step was the article by 
Albarkde & Monkewitz ( 1  992), intentionally limited to time-periodic (asymptotic) 
flows, with a foray into the consequences of flow non-uniformity (specifically, the end- 
plate boundary layers). The second step is the present article, where time-quasi- 
periodic flows will be treated. 

1.2. The nature of the three-dimensional effects at low Reynolds numbers 
For a long time, the greatest theoretical interest was attached to the basically two- 
dimensional flow (with spanwise translational invariance). Unfortunately, not much 
information is available about this flow, because it does not exist in nature. However, 
we will sketch briefly its plausible stability characteristics. 

The basically two-dimensional flow has symmetries : time translational invariance 
and spanwise translational invariance. The former is broken for Re > Re,, x 50. It 
follows a time-periodic bifurcating flow, with only spanwise translational invariance. 

For Re 2 180, flow visualizations (Hama 1957 and Williamson 1988) show z- 
periodic patterns, with a spanwise wavelength independent of the length, indicating an 
instability of the two-dimensional bifurcating flow. (Here, as usual, z is the spanwise 
coordinate, x is the streamwise coordinate, and y is defined by (x, y, z )  being a direct 
orthogonal frame.) In the simplest case, the flow would be linearly unstable with 
respect to some z-sinusoidal disturbance; in reality, the sudden appearance of highly 
nonlinear patterns, like horseshoe vortices, and the existence of hysteresis (Williamson 
1988), suggest that finite-amplitude perturbations are involved in the (subcritical) 
bifurcation. 

We now limit the scope of our study to the flow around a finite-length body, at 
Reynolds numbers low enough (Re 5 180), such that no three-dimensional instability of 
the two-dimensional basic flow is expected. Many complicated three-dimensional 
effects are nevertheless observed. Indeed, there is a conflict between the finite span and 
the diverging critical correlation length, which is known from the bifurcation theory of 
spatially extended systems (Kuramoto 1984) : this results in a strong finite-length effect. 
For larger rescaled lengths (either larger aspect ratios or larger Reynolds numbers, 
within the above limit), the correlation length is much smaller than the body length and 
the concept of an end effect is more relevant, because the pattern does not depend on 
the actual length, but on the mere existence of ends, and on flow details near the ends. 
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2. The Ginzburg-Landau model and its properties 
In this section, we recall the GL model and its simple properties, which, essentially, 

have already been presented, along with experimental verifications, in Albarede & 
Monkewitz (1992). Our aim is to give established aspects of the GL model that will be 
used later as a basis to treat new or more controversial issues. 

2.1. The Ginzburg-Landau model 
The wake parameters are V,, d, u, L ;  d 2 / v  and d can be used as natural time and length 
units (mass does not appear because we do not consider pressure). The dimensionless 
wake parameters are the Reynolds number and the aspect ratio. 

A thin slice of the wake (for example between z and z+dz) is a local oscillator 
governed by a Landau equation with a complex linear coefficient u = a,+iui and a 
complex nonlinear coefficient 1 = 1, + ilj. A diffusive coupling is added, with a complex 
diffusive coefficient y = yr+iyi. In its simplest form, the model consists of the 
following relation : 

u(t, ~ 0 7  Y,, z ,  Re) = V,o(x,, Y O ,  Re) + Re M t ,  z, Re)], (2.1) 

where A is a complex solution of the GL equation 

a, A = CTA +,u a: A - llAlz A ,  

and obeys the boundary conditions 

A( t ,  &L/2) = 0.  (2.3) 

We also use M = IAI, modulus of A .  
A more realistic relationship between the complex amplitude A and the observable 

fields is given in the Appendix. Let ‘node’ denote a zero of the complex amplitude. The 
complex amplitude can spontaneously vanish, yielding ‘free’ nodes, in the interior of 
the definition interval. Free nodes allow phase discontinuities, and correspond 
physically to vortex dislocations. 

The fundamental piece of information in (2.3) is the existence of nodes bound to the 
ends. As a first approximation, and for the experimental set-up described in $3.2, the 
length L used in (2.3) is the plate-to-plate distance. The consequences of this 
approximation are examined in $4.2. 

In principle, initial conditions should be stated. However, numerical simulations 
show that, with small-noise conditions, i.e. small when compared to ( ~ , / l , ) ~ ’ ~ ,  the 
memory of the initial noise is usually lost after a duration of order a;I. Similarly, in 
experiments, initial conditions are usually represented by the turbulence level only. 

The following quantities have been introduced: t is time, v is some (real) velocity 
component, V,, is the same component for the basic flow, (x,, yo) defines a measurement 
line, parallel to the cylinder, typically (x,, yo) = (5d, d ) .  In (2.2), u, y, 1 are functions of 
the wake parameters V,, d, u only and do not depend on L, since the oscillators are only 
locally controlled (this might be wrong, if the conclusions of Davey, Hocking & 
Stewartson 1974 about shear flows were equally applicable to wakes). They can be 
replaced by their complex conjugates without any effect on observable quantities. 
Thus, we must indicate the conventional choice gi > 0. It affects the signs of 1, and pi. 
From dimensional considerations, ud2/u, y/v ,  lv are functions of Re only. In 
particular, the correspondence with the Landau model leads to 

u, = k(Re- Re,). (2.4) 
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Re, is the critical Reynolds number in the limiting case L / d +  00. We use the value of 
k from Mathis ( 1  983) or Provansal et nl. (1987) : 

k = 0.20~0.0211/d2,  Re < 80. (2.5j 

(2.6) 

Following Albarede & Monkewitz (1992), we use 

Re, = 48.5 f 1.5. 

2.2. The linearized problem 

(vr + iui) + @, + ipJ a: 
With the boundary conditions (2.3), we diagonalize the operator 

The eigenvalues are 

utL = u, - p r  q i  + i(ui -pi q i )  where q,  = nn/ L, n = 1,2, . . . . (2.7) 
The eigenfunction associated with u, is 

S,(z) = sin (q,(z + L/2) ) .  

a, A = (a, + iai) A + @, + ipi) a: A 

A ( t , z )  = c A,(t)S,(z) .  

a ,A,  = u, A, .  

The general solution of the linearized GL equation 

and the boundary conditions (2.3) is consequently 

n - 1 . 2 . .  . 
A ,  is called the global complex amplitude of the nth linear mode and obeys 

(2.10) 

(2.1 1) 

We also use M ,  = 1A,1, modulus of A, .  
The nth linear mode is linearly excited when the real part of u,& is positive, which 

occurs for L > nn@,/ar)'12. In particular, the critical Reynolds number Re,, found by 
equating the growth rate a,, to zero, is given by the relation 

(2.12) 

2.3. The rescaled Ginzburg-Landau equation 
Following Kuramoto (1984), we propose new scales for amplitude, time and space, 
based on a,, p, and 1, : 

K = A(lr/ur)'/2,  f = tur, 7 = z(vr/pr) l?  (2.13) 

The new time and space scales can be used to rescale all measured quantities. (These 
rescaled quantities must not be confused with dimensionless quantities, based on d 2 / v  
and d.)  In particular, the length of the body yields a 'Kuramoto' rescaled length: 

L = L ( r . ~ ~ / p , ) ' ~ ~  = L[k(Re- Re,)/pr]'/2, (2.14) 

which is a function of both the Reynolds number and the aspect ratio. 
The nth linear mode is linearly excited when the real part of a, is positive, which 

occurs for L > nn or q, < 1 .  The rescaled GL equation is 

a i K =  ( 1  +ic,)A+(l +ic,)a:A-(l +ic,)1422, (2.15) 

where c, = ui/ur, c1 = pJpr and cp = l t / l r  are functions of the Reynolds number only. 
As c, affects the solution only by a frequency shift, the mathematically significant 

model parameters are the coefficients (c,,c2) and the rescaled length L. The critical 
condition for the flow oscillation is L = n, a relation equivalent to Re = Re,. As long 

Re, = Re, + @,/k)  qf = Re, i- (p,./k) ( x / L ) ~ .  
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as the variation of the coefficients (el, c2) with Re can be neglected, 15 alone represents 
the evolution of the wake when varying Re or L / d .  In this sense, L is the main 
parameter of the wake. As a simple but striking consequence, (2.14) shows that 
doubling the aspect ratio (for a given Reynolds number) is equivalent to quadrupling 
the difference Re- Re,, (for a given aspect ratio). 

2.4. The one-mode approximate solution : correspondence with the Landau model 
We limit the expansion (2.10) to the first linear mode: 

A(f, z) = A,(f) S,(Z). (2.16) 
This truncation is roughly applicable if TL < L c 2n and reduces the GL model to a 
Landau equation : 
or, without rescaling, 

dcXl = ~ , X ~ - i ( l  +ic,)(A,1221, 
dt A ,  = g1 A ,  -:dA,IZ A , .  

(2.17) 
(2.18) 

The coefficient originates from the relation 4 sin3 (x) = 3 sin (s)- sin (3s). Equation 
(2.18) is the basis of the former Landau model. It is definitely not the Landau equation 
obtained from the GL equation by suppressing the z-dependence. 

The asymptotic solution of (2.18) is 

2, = R, exp (6, i), (2.19) 
with M ;  = $(1-@) 1 '  (2.20) 

0, = c, - c, -if;(., - c,). (2.21) 
Z ( f , q  = 2 1 ( f ) S , ( ~ )  is the sum of two planes with wavenumbers +ql  and the angular 
frequency a,, interfering so as to obey the boundary conditions (2.3). 

The 'adiabatic' elimination of the linear modes with n > 1 is actually not correct, 
because the excited first linear mode is coupled with the other linear modes with odd 
n (all these modes being moreover synchronized). From Albarkde & Monkewitz (1992), 

- 

with 
€ = (L/TL- 1 ) y  (2.22) 

(2.20) and (2.21) should be corrected by O(e3) and O(eJ), and some O(e2) spanwise 
phase variation must be allowed. However, as long as L 5 37t and no second mode is 
observed, the Landau model is a sufficiently accurate representation of the amplitude 
and frequency measurements. 

2.5. The Iarge-L approximate solution 
We consider the case L 9 n. Physically, this can be achieved, without bound, by setting 
a large aspect ratio for a constant Reynolds number or by setting a large Reynolds 
number for a constant aspect ratio, although, in the latter case, the coefficients 
(c,, c2) (Re)  will probably make the GL model break down for Re large enough. For 
now, let us concentrate on the increase of I5 for constant (el, c,). We also restrict our 
analysis to time-sinusoidal solutions, which always exist, and are often stable 
asymptotic solutions (they correspond to time-periodic flows). 

Using rescaled quantities, a time-sinusoidal solution can be written : 
A(f, T )  = M($exp(iqb(t,T)), M > 0, (2.23) 

w(T, T) = aiqb = constant. (2.24) 
qb is the phase; the (rescaled) angular frequency 6 is a constant, equal to c,-c, for 
parallel shedding. 

In an infinite medium, the GL equation has plane wave solutions: 
A@(f,Z) = (1-$)'/2exp(iis,-i+iq~ with 141 < I ,  (2.25) 

(2.26) w4 = c, - c, - qyc, - c,). 
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A,, a parallel plane wave, corresponds to parallel shedding, and Jg + o ,  an oblique plane 
wave, corresponds to oblique shedding. Equation (2.26) looks like (2.21), with 4, 
replaced by q. 

Actual solutions are identical to plane waves only away from the ends, where they 
have to comply with the boundary conditions (2.3). The plane wave emerging from the 
left end z = - L/2 has a rescaled wavenumber qm, which is a function of (q, c,) only; 
by symmetry the right end selects the opposite wavenumber. The work of Nozaki & 
Bekki (1984) allows determination of the analytical form of qm(cl, c,) (in particular, 

The plane waves are not superposed, but connected through a ‘phase shock’.? The 
4, > 0)- 

phase shock thickness is 

(2.27) 

The foregoing phenomena can be observed only if the aspect ratio and the Reynolds 
number are such that 

(2.28) 

Away from the ends, the phase is a solution of one autonomous equation, namely the 
phase diffusion equation, while the amplitude is slaved to the phase. The phase 
diffusion coefficient is 1 + c1 c,. 

L(Re, L / d )  9 Aqc,, c2). 

3. The numerical and experimental methods 
3.1. The numerical method 

The numerical method is described in detail in Albarede (1991). It is very simple and 
efficient, and its principle was proposed by P. Haldenwang (1989, private communi- 
cation). Equations are discretized and linearized, with a time-space mesh (dr, dz) 
and errors O(dP + dz2). Initial conditions can be set arbitrarily; unless otherwise stated, 
they consist of random noise of rescaled amplitude lo-,. A simple flag allows either 
zero or periodic boundary conditions to be set. The solution for the next time step is 
obtained by solving the resulting tridiagonal linear system, which is elementarily 
performed by forward elimination and backward substitution. The code reproduces 
very accurately analytical solutions. 

Of course, the rescaled representation improves the accuracy. The mathematically 
non-significant coefficient c~, can be chosen so as to obtain a low absolute angular 
frequency, (is( = lajq51. In this case, co is said to be ‘adapted’: the solution varies slowly, 
and time steps of order l/lisl can be used. From experiments, we know that three- 
dimensional effects result in frequencies only slightly (typically 20 %) lower than the 
parallel oscillation frequency : this feature is reproduced by multiplying the numerical 
solution by exp (iAc, t ) ,  where co + Ac,, should be the rescaled physical linear angular 
frequency. Actually, we use a much lower Aco, in order to introduce a stroboscopic 
slowing down, helpful for visualization (see figure 14a, etc.). 

3.2. The experimental method 
The apparatus should allow a continuous and independent variation of the 
dimensionless wake parameters (Re, L / d ) ,  in order to observe the birth, evolution and 
interaction of the different modes involved. This was not the case with the old 

t A term sanctioned by use, but slightly misleading, since the solution is infinitely smooth. 
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FIGURE 1 .  The wind tunnel and the obstacle, fitted with end plates. New apparatus: 
d = 1.6 mm, F = 20 mm. Old apparatus: variable d. constant L = 100 mm, no end plates. 

apparatus used at LRC: L / d  was varied by using rods with different diameters and 
identical lengths, which also required an adjustment of the upstream velocity to keep 
the Reynolds number unchanged. Even so, there were necessarily violations of 
hydrodynamic similarity (boundary layers, blockage effect, etc.). 

The effect of the aspect ratio variation was revealed more clearly with a new 
apparatus, with mobile end plates and a constant diameter d = 1.6 mm (see figure 1). 
The overall mechanical set up fulfilled the symmetry z-+--z. The end plates were 
ideally half-planes defined by (x > - F and z = f L / 2 )  with a fetch F = 20 mm. With 
the old apparatus, the end plates were wind tunnel walls, with F z 15 cm. The fetch is 
a wake parameter. More generally, the end condition can be represented by a set of 
parameters. (Small sets are obtained for simple geometries, such as free ends, disk or 
plane end plates, etc.) 

The wind tunnel had a 16 to 1 contraction. ending into a 10 cm square section. The 
upstream flow was regulated by a sonic throat and calibrated by laser Doppler 
anemometry (LDA). The rods were stiff aluminium rods, that could not be distorted 
by the air flow, screwed at both ends to the Plexiglas walls. Careful attention was paid 
to reducing three-dimensional effects not due to the body. The velocity profile was flat 
( & 0.5 YO) in the central part (7 cm) of the test section. In optimal conditions, the noise 
level, including the measurement noise, was 1 % (standard deviation). 

A single, mobile LDA measurement point was used to measure the free flow velocity 
or the streamwise velocity component (not simultaneously). Pressure was not 
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measured. The frequency and the amplitude (of the fundamental harmonic) were 
extracted from the power spectrum. A stationary hot wire was used as a second 
measurement probe. Average phase differences were deduced from the cross- 
correlation spectrum. 

A very common experimental task is the measurement of a critical wake parameter, 
for a given mode. Two methods are available: detecting the presence of a peak in the 
power spectrum, above the noise level; or extrapolating the peak height to zero, 
following a certain theoretical or empirical law (for example (2.20)). Unless otherwise 
stated, we use the first method, which is quicker, although noise-level dependent. The 
resulting relative bias is roughly equal to the noise level itself, i.e. less than 1 YO (usually 
negligible). 

The G L  model parameters are L and the coefficients CT,, ,ur, lr, c,, c,, c,. They depend 
globally on the wake parameters (Re, L / d ) .  The model parameters are determined by 
identification of the model solutions with the measured flow. The parameters vr, l,, c ~ , ,  
c ,  are assumed to be provided by the previous Landau analysis. The coefficient c,, 
affects the solution only by a frequency shift, and can be deduced from parallel 
shedding frequency measurements. In addition to the Landau model parameters, the 
GL model involves three parameters: &Re, L / d ) ,  ,ur(Re), c,(Re). The variation of 
(c,,cz) as a function of Re was not precisely determined, because of the very high 
accuracy and great stability required. Experiments with variable L and constant 
V,, d are not affected by the variation of coefficients with Re: they can be interpreted 
more safely than experiments with variable V, and constant L,d .  

The streamwise evolution of the wake is not directly treated by the GL model. As 
a matter of principle, only the dominant, pattern-selecting, spanwise evolution is 
treated. Similarly, systematic time-dependent velocity measurements are carried out 
only on a spanwise segment located in the wave-making area. However, we would like 
to interpret smoke or dye concentration photographs of an (x,z)-plane, whereas the 
solution of the GL model can be compared directly only with a cinematographic 
recording, made on a spanwise line, or the signals of a set of hot wires located along 
the span (a system used by Gerrard 1966). 

We assume that the smoke filaments are carried away by the flow without distortion, 
as if imprinted onto a solid support moving away with a celerity c V,. By analogy, 
we will call this hypothesis the ‘plotter principle’. Thus a constant-time, variable-.u 
visualization, and a variable-time, constant-x recording would correspond to each 
other through the simple transformation t = -x/c. Actually, the plotted principle is a 
fairly correct approximation, because a given smoke filament is carried out of 
observation window before being distorted much (the advection time is much shorter 
than the distortion time). 

4. The one-mode regime 

4.1. The nonlinear Landau coeflcient c, 

Strykowski (1986) found c, = -3.0, while Provansal ez al. (1987) found c2 = 0. Since 
then, other evaluations have confirmed Strykowski’s result : 

Schumm, Berger & Monkewitz (1 994) : c, = - 2.90 f 0.45 Re < 60, 

Noack & Eckelmann (1991): C, = - 1.5 Re < 60, 

DusEk, Le Gal & Fraunie (1994): C, = - 2.7 Re = 48. 
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FIGURE 2. Relationship between the saturation ratio p (proportional to the squared amplitude) and 
the Roshko number Ro, (dimensionless frequency), during transients of the first mode, following an 
instantaneous shift of the free flow velocity. The wake parameters are listed in table 1, for the three 
cases a, b, c. Old apparatus used. 

L (cm) d(cm) Re, Re-Re, dRo,/dp c2 Figure number 

10 0.6 58 6.5 0.663 - 3.2 2 (4 
10 1 .o 68 8.0 0.73 - 2.9 2 (b) 
10 1.6 102 22.6 1.389 - 1.9 2(c) 

TABLE 1. Experimental conditions and results 

The value of DusCk et al. (1994) results from a numerical simulation of the 
Navier-Stokes equations. There are still large discrepancies between these results, and 
the determination of c,  is still an open problem. 

A reliable measurement of c, results from recording the squared amplitude and 
frequency during transients following an instantaneous shift of the free flow velocity 
(while the other wake parameters are steady). The solution of the Landau equation 
(2. IS), without assuming a steady angular frequency, yields a linear relation between 
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A4 (a.u.) 
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FIGURE 3. Spanwise variation of the first-mode amplitude M .  Wake parameters: Re = 58.8, 
L = 76 mm, d = 4 mm, F = 10 mm. Fitting formula: M(Z) = M,cos(K(Z-Z,)/L’) (where 
Z = z+zo). Result: wake centre zo = 49.6 mm, influential length L’ = 60.6 mm, amplitude 
M, = 0.189 arbitrary units (correlation 0.993). 

the time-dependent angular frequency (time-derivative of the phase) and the saturation 
ratio, p(t)  = [M1( t ) /MJ2 ,  such that lim,,,p = 1 : 

(4.1) 
We present three experiments (see figure 2u-c) using the old apparatus: the relation 

(4.1) is acceptable and leads to values of c2 according to 

(4.2) 

Ro, the Roshko number, is a common notation for a dimensionless frequency: 
Ro = fd2/v. Experimental conditions and results are collected in table 1. From these 
results, we keep for further use in this paper 

q ( t )  = 2xf1(t) = c r l t - ~ , ~ l r p  = a,,-c,k(Re-Re,)p(t). 

c2 = (2rc/k)(Re- Re,)-’df,/dp x 10x(Re- Re,)-’(dRo,/dp). 

cz = -2.6f0.7 for Re < 100. (4.3) 

4.2. The determination of the Ginzburg-Landau diflusion coeficient p 

4.2.1. The dissipative real part pr  
The initial evaluation of pr  by Albarkde & Monkewitz (1992), 

pLI = 32+6v, Re < 100, (4.4) 
is based on (2.12), where L is the plate-to-plate distance. Two remarks can be made 
about this method of evaluation. First, the values of pr  obtained by Albarede (1991) 
from various experiments, with different end plate configurations and Reynolds 
number ranges, are somewhat scattered, from p r  = 24v to 39v, and the scattering is 
larger than the fit accuracy. Secondly, in (2.3), the bound notes are wrongly assumed 
to be located on the end plates. Although the nodes are indeed quite close to the end 
plates, this assumption is not quantitatively correct. 

Let us propose a more careful application of the zero boundary conditions: 

A( t ,  f L’/2) = 0, (4.5) 
where z = +L’/2 is the actual position of the nodes. In practice (see figure 3 for 
example), the experimental spanwise variation of the first mode amplitude is fitted with 
a sinusoid and the nodes are obtained by intersecting the sinusoid with the z-axis. The 
‘influential’ length L‘ is smaller than the plate-to-plate distance L, because of partly 
subcritical end-plate boundary layers. (Gerich & Eckelmann 1982 measured very 
carefully node-to-plate distances, but only for large-L flows.) 
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FIGURE 4. Visualization of the first mode (courtesy of T. Leweke): Re = 50, L = 75 mm, 
d =  1.3mm. t =  1 . 9 ~ .  

The results of 92 are applied with the notation changes L --f L', p +,d. where p' is the 
actual GL diffusion coefficient. In particular, (2.3). (2.12) and (2.13) become 

r3, A = U A  +p' a: A - IJAJ' A ,  

Re, = Re,, + (,uC/k)(n/L)', 
(4.6) 

(4.7) 
A = A(lr/gr)lI2, t = mrr i = z ( u ~ / , u ; ) ~ / ~ .  (4.8) 

p;/pr = (L'/L)'. (4.9) 

Combining (2.12) (which becomes only a definition of pr) and (4.7), we obtain 

One must be aware that p / v  or L / L  are (not simple) functions of Re, L / d  and F/d, 
whereas p'/u is a function of Re only. In particular instances, we measured L'/L = 0.8 
(see figure 3) and even L'/L = 0.5 (Re = 52, L = 50 mm, d = 1.5 mm, F = 10 mm, 
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FIGURE 5. Sketch of the time and space evolution of the one-mode wake. Vortex filaments are 
particular isophases. 

L’ = 27.5 mm). These observations suggest 8 < pi / .  < 21, assuming 24 < pr/v < 32 
(for small-Fexperiments). More precisely, the results of Leweke & Provansal(l994) on 
the torus allow the following evaluation : 

pi  = 10+4u for Re < 100. (4.10) 

The fundamental quantity is of course pi. However, we often deal with small-L 
experiments where only L (not L’) is known: in this case, pr must be used. For large- 
L experiments, L‘ = L and pi must be used (in particular the Kuramoto lengthscale is 
based on pi). Of course, we recommend the systematic use of L’ for future work, if a 
greater consistency and accuracy of the GL model is sought. 

4.2.2. The dispersive imaginary part pi 

problem), derived as in Albarede & Monkewitz (1992): 
Whenever necessary, we will use the following values (unaffected by the above 

c,  - c2 = 2.7 & 0.6. Re = 5 5 ;  
c, = 0.1 f 1, Re = 55. 

(4.1 1) 
(4.12) 

Evaluation (4.12) is consistent with evaluations (4.3) and (4.1 l), and c1 happens to be 
close to zero, although we know no theoretical reason why it should be exactly zero. 

4.3. The spanwise uariation of the phase 
According to (2.19), no spanwise variation of the phase is allowed (parallel shedding). 
Actually, this result is true only in the limiting case E+K (see $2.4). Above the 
threshold, the spatial Fourier coefficients of the phase can be expanded in powers of 
E (Albarede & Monkewitz 1992), and the leading term yields 

$ ( r ,  Z )  = (- $ 2 2 ) ( L / ~ -  1)(L/2~) cos (27cz/L)+wt, (4.13) 

where $22 is defined by 
- $22 = (c ,  - c2)/[3(1 + 411. (4.14) 

The sign of the phase is not arbitrary. In particular, one can check that (4.13) does 
predict the correct curvature for vortices, as seen in figure 4 or figure 5 (for this 
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FIGURE 6. Spanwise variation of the phase. Same wake parameters as those of figure 3.  Fitting 
formula: A$(Z) = (4 , , /2 )~0~(2x(Z-~~) /L' )+A$,  (where Z = i+zo). Result: i-average phase 
difference A$,,, = - 3.08, wake centre zo = 48.8 mm, influential length L' = 62.9 mm, $ p p  = I .36 
(correlation 0.997). 
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FIGURE 7. d,, (peak to peak spanwise variation of the phase) os. the Reynolds number. Same 
wake parameters as those of figure 3. 

purpose, one needs the following elements: -& > 0, which is clear from (4.1 1); 
w > 0, which results from the sign convention on vi made in $2.1, and the plotter 
principle of $3.2) The comparison can be made more quantitative, by measuring (as in 
figure 6 )  the spanwise variation of the phase, defined as A$@) = $( I ,z ) -$ (~ ,  0). Data 
are fitted with the formula 

A$(=) = ($p , /2)  cos (2xi lL')  + A$,n. (4.15) 

The fit parameters are the peak to peak value $ p p ,  the constant A& and the influential 
length L'. 

In an experiment with variable V, and constant L, d, we observe that #,, varies 
linearly with Re. From (4.13) and (4 .15) ,  we easily derive 

(4.16) 

From figure 7, (2.12) and evaluation (4.4), we obtain = 0.100, L = 76 mm, 
d = 4 mm, ReI -Re, = 4.4 f 0.9 and finally - dz2 = 0.9 0.2. From evaluations (4.3), 
(4.1 1) and equation (4.14), we obtain - qhZ2 = 0.8 f 0.3. The amplitude (and shape) of 
the phase variation are thus quantitatively predicted. We also obtain a fairly sensitive 
measurement of qhZ2. 

We also performed an experiment with variable L and constant V,, d :  $,, increases 
linearly with L, and the resulting estimate of -$22 is compatible with the above values. 
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5.  The second mode 
5.1. The existence and the critical Reynolds number of the second mode 

A second mode (figure 8) is observed when the Reynolds number is increased above a 
critical value Re, > Re, (Mathis 1983; Mathis, et al. 1984a, b). It is characterized by 
the presence of a second frequency f ,  in the spectrum of the velocity fluctuations. We 
will show that this second mode near its threshold is the second linear mode. 

We begin by checking whether the critical Reynolds number Re, follows the linear 
theory critical relation 

(5.1) 
A first set of data is obtained from experiments with the old apparatus: with the data 

of Mathis (1983), Re, is plotted as a function of qi = ( 2 7 ~ / L ) ~  (see figure 9) .  The fit with 
(5 .1)  yields p, = 42v and Re, = 48.7, fairly close to pr  = 39v and Re, = 49.7 obtained 
likewise for the first mode (Albarede 1991). 

A second set of data is obtained from experiments with the new apparatus. We have 
to check that the critical length of the second mode ( 2 x )  is twice that of the first mode 
(K), for any given Reynolds number. More generally, we check in figure 10 whether the 
wake parameters (Re, L / d )  for miscellaneous critical configurations obey the critical 

0 = uZr = k(Re,-Re,)-prqi. 

relations 
Re,, = Re,+( ,u, /k)q~ for n = 1,2. 

With the new apparatus only, the second mode is not observable for Re < Re,, where 

even if Lis  increased up to 37t (this appears in figure 7 of Albarede & Monkewitz 1992, 
where q: reaches nearly ten times its critical value, with no onset of the second mode). 
The new apparatus has a much smaller fetch F than the old apparatus, hence thinner 
end-plate boundary layers. We will explain the role of end-plate boundary layers in the 
suppression of the second mode. 

With the old apparatus, the fetch was F z 15 cm; for a constant length L = 100 mni 
equal to the wind tunnel width and a diameter d = 1.6 mm, the second mode could be 
observed for Reynolds numbers as low as 50. With the new apparatus, the fetch was 
F = 20 mm; for a variable length, lower than 7 cm, and a diameter d = 1.6 mm, the 
second mode could not be observed for Re < Re,. The (laminar) end-plate boundary 
layer thickness 6 obeys Blasius’ law, which can be expressed adequately here as 

6 / d  z 5(F/d)”,  Re-’” (5.4) 
or, after rescaling according to (4.8), 

(5.5) 
Unlike 6, bincreases with Re: the rescaled boundary layers are thicker, for greater 
Reynolds numbers. A plausible explanation of the absence of the second mode for 
Re < Re, is that the end-plate boundary layer supports a cell when &exceeds a critical 
value 8,. This critical condition is inspired by the critical condition 15 > x ,  which has 
been demonstrated for the first mode. As an indication, from ( 5 . 5 )  and known 
quantities, we obtain 8, = $(Re,, F / d )  z 1 .  If F/d were small enough, there might be no 
second mode at any Reynolds number. 

5.2. The spanwise variations of the second mode amplitude and phase 
The spanwise variation of the second mode amplitude is reported by Mathis e f  al. 
Boyer (1984b), and the result is closely similar to the theoretical expectation. 

A prominent feature of the second linear mode is the change of sign of &(z) (or the 

Re, = 57, (5.3) 

&Re, F / d )  z [5(F/d)(1- Re,/Re)/Q~:/v)1”~.  
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FIGURE 8. Visualization of isophase vortex lines in the second-mode regime, using the smoke wire 
method (courtesy of T. Leweke): Re = 95. L = 21 mm, d = 1.3 mm, L / d  = 16, c = 2.97~. 

7c phase jump) at z = 0, corresponding to a dislocation with phase opposition at 
midspan. Gerich (1987) published a flow photograph showing phase opposition for all 
x, and confirmed phase opposition also for all t (Gerich 1990, private communication). 
His figure c shows the second mode, in experimental conditions corresponding to a 
rescaled length L = 3.5~. His figure d shows the first mode, with L = 2 . 2 ~ ,  which is still 
compatible with the condition for the one-mode regime ( L  < 27c), if some uncertainty 
is allowed. 

This interpretation is fully confirmed by flow visualization in our wind tunnel 
(Provansal, Leweke & Albarede 1992 or Albarede, Leweke & Provansal 1992), where 
we can determine more accurately the model parameters. When L > 2x, a phase 
opposition is clearly observed between the left (negative z )  and right (positive z )  parts 
of the wake (see figure 8). When L -= 2x, only the first mode is observed (see figure 4). 



Quasi-periodic cyliiider wakes and the Gircburg-Landair model 207 

Re2 

~ y = 48.698 + 21 1.46.u, 

0 0.03 0.06 0.09 0.12 0.15 

(924* 

FIGURE 9. Second-mode critical Reynolds numbers Re, us.  (q2 d)' = (2rrd/L)'. 
Data from Mathis (1983) (non-corrected values). Old apparatus used. 
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FIGURE 10. Reynolds number us. critical (4, d ) 2  = (nnd/L)* of the nth mode (n = 1,2). According to 
the GL model (and evaluation (4.4)), all points should lie on the straight line. We gathered 
miscellaneous experimental results, and the thresholds were determined by observing the appearance 
of a new frequency while varying the length. New apparatus used. 
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FIGURE 11. Frequencies of the first and second modesf, andf, ~ J S .  (a )  L/d ,  (b)  (q, d) l  = ( X ~ / L ) ~ ,  for 
various Roshko numbers: Ro, = fn d 2 / v  (n = I ,  2) .  Re = 70. New apparatus used. For LJd > 30, the 
second mode splits into incoherent end cells. The experiment cannot be performed for L / d  > 45 
because the wind-tunnel boundary layers interfere. 
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FIGURE 12. Spanwise variation of the amplitude of the first (n = I )  and second modes (n = 2) ,  
Re = 70, L = 2 . 6 ~ .  New apparatus used. 

In some cases, the left and right cells of the second mode oscillate at slightly different 
frequencies. Quite surprisingly, we still observe an (average) phase opposition. In fact, 
phase opposition is now the most frequent phase relation: once in a while (at the beat 
frequency), the cell with a slightly greater frequency emits an excess vortex, resulting 
in a swift phase jump, as observed by Mathis (1983). This behaviour results from the 
inevitable small dissymetry of the free flow. 

5.3. The influence of the aspecl ratio on the second mode 
At Re = 70, we measured the variation of the frequency with L (figure 11 a, b). The 
global amplitude of the second mode increases quickly with the length, and for 
L = 2.671, it is already greater than the global amplitude of the first mode (see figure 12). 
This explains why only the second mode appears on visualizations (figure 8 and Gerich 
1987, figure c). Phase opposition was not checked, because only one probe was 
available; but the right and left frequencies were rigorously identical ; otherwise, we 
would have detected the characteristic low-frequency beat. 

For L FZ 371, the second mode splits into end cells, with slightly different frequencies 
f, andy2 (implying a small dissymetry). Then, the wake exhibits the nonlinear mixing 
of three frequencies (fl, f , , f 2 ) ,  with in particular the characteristic low-frequency beat 
at lf2-.Gl (Albarede 1989). 

For even greater L, we know, from Gerich & Ekelmann (1982), that the first mode 
regains spatial predominance. away from the ends. The end cells are well separated, do 
not interact and are independent of the length: the finite-length effect, through a 
nonlinear saturation process has been replaced by an end effect. Gerich & Eckelmann 
(1982) had shown that the end cells are linked to the end-plate boundary layers. We 
have shown that they are linked to the second mode through the variation o f t .  Thus, 
by transitivity, the second mode is linked to the end-plate boundary layers. The end- 
plate boundary layers enhance the second mode or end cells, both of them being 
different limits of a single mode with odd parity. 

5.4. Analysis of the second mode within the GL model 
It is very important to examine if the GL model can also explain the nonlinear 
properties of the second mode (the saturated amplitude, and the distortion of the 
shape). For this purpose, we use the mode expansion (2. lo), truncated to the first and 
second linear modes: 

X(i,F) = X,(r )S , (7)+A2(f )S2(F) .  (5.6) 
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This truncation is roughly applicable if 271: < e < 371: and reduces the GL model to a 
set of nonlinear differential equations (the superscript * is used for complex conjugates) : 

(5.7) 
(5.8) 

These coupled equations have no solution (R, exp ( i q  f +  M ,  exp (i(w, f+ q5,))). 
with constant Mn, On, q5n (n = 1,2) and w1 =k O,, unless Rl = 0 or R, = 0. 

In the numerical simulation of the GL equation for 271: < ~5 < 3n and random noise 
initial conditions, the second mode does not appear. When imposed in the initial 
conditions with a small rescaled global amplitude M, = lo-’, it does grow according 
to the linear theory, up to a certain time, when it is suddenly overwhelmed and 
annihilated by the first mode. The first mode starts at a very low level on the numerical 
noise, but, as it grows faster (glr > g,,), it is eventually stronger than, and able to 
exclude, the second mode. We call this phenomenon ‘nonlinear damping’. 

We tried without success to trigger the second mode by introducing boundary layers 
in the numerical velocity profile (for E 2 271:). In fact, the link between the second mode 
and the end configuration might escape the GL model because the weakly three- 
dimensional approximation completely breaks down near the ends: there, the flow is 
not weakly three-dimensional, the wake is unrelated, even locally, to the plane wake, 
and the stability properties can hardly be represented by Re ( z )  and a one-dimensional 
model. 

dt ,TI = s1 ,TI - ( 1 + ic,) ($Ill 1, Xl + ;$A: + XI IJJ’)), 
d,A2 = 3, 2,- ( I  + ic2)($l121z 2, +;XtA:  + X,,Il112). 

6. The description of large-t flows by the GL model 
We consider wakes obeying the relation (2.28), for example L >  lox, where the 

rescaled length E is defined by (2.14). Since the Reynolds number cannot be too large, 
the aspect ratio cannot be too small (Re 5 180 and L / d  2 20). Moreover, the Reynolds 
number cannot be too small (otherwise, the description of $4 is relevant). 

We discuss the case of large-E flows in the stable case, when the vortex pattern 
consists of smoothly connected plane waves. We show that the chevron solution of the 
GL model becomes unstable for some values of the model parameters (q, c,), and we 
relate this instability to experimental observations. 

6.1. The description of stable large-LJlows by the GL model 
The GL model and the plotter principle have been used to interpret large-L 
experiments (Albarede & Monkewitz 1992). All mathematical aspects presented in $2.5 
are confirmed. Empirical laws proposed by Williamson (1989), i.e. the ‘cosine law’ and 
the reflection symmetry of the phase shock in the (x ,  z)-plane are equivalent, as shown 
in Albarede (1991), to the simple relation 

where A, and f, are the streamwise wavelength and the frequency of parallel shedding. 
Following $4.2, pi (not pJ must be used in (6.1). The left-hand side of (6.1), deduced 
from Williamson’s (1989) measurements, is well represented by the linear fit 

The right-hand side of (6.1) results from evaluations (4.3), (4.10) and (4.1 1). Equation 
(6.1) is well verified (at Re = 5 5 ) .  Similar results were obtained for the torus by Leweke 
& Provansal (1994). The study of the phase shock velocities, as in Albarede & 
Monkewitz (1992), shows a quantitative agreement with the GL model and evaluations 
(4.10) and (4.1 1). 

h:S,/(470 = PXC, - C 2 h  (6.1) 

Aifo/(4n) = 24.1 +0.264(Re- Re,) for Re -= 160. (6.2) 
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FIGURE 13. Stability diagram in the plane (c,, c,). In the stable (time-periodic) region, the large-L 
asymptotic solution is the stable chevron. In the unstable region, the following time-quasi-periodic 
or chaotic patterns are observed: the oscillating chevron, the dislocated chevron, the split wake. The 
boundary is drawn from the numerical parameters: L = 48, co adapted, d i  = 0.4, d.= 1 .  The 
boundary of the phase-diffusion unstable region is also drawn. 

The rescaled spanwise wavenumber ij,(c,, c,) can be deduced from Williamson’s 
(1989) angle and streamwise wavelength measurements (Albarede 1991). Following 
44.2, pi (not p r )  must be used for rescaling. At Re = 64, the experimental value of qm 
is 0.5+0.1. It is compatible with the theoretical value (see $2.5), based on evaluations 
(4.3), (4.10) and (4.1 1). The strong decrease of the experimental value of q, with Re 
can be explained by a decrease of c, or an increase of c, (the latter was already 
suggested in $4.1). 

6.2. Nurnerical observatioiis of large- l  unstable cases (guided by experimews) 
From Williamson (1989) and Konig et a / .  (1990), the (time-periodic) chevron is stable 
only for Re > Re,, with 

Re, = 64. (6.3) 
For Re < Re,, a dislocated chevron is observed, consisting of a central cell and two 
lateral cells (and ever-present end cells). The central cell oscillates with a higher 
frequency and a lower angle. 

Ideally, we consider the stability of the chevron solution with respect to variations 
of (c , ,cp) ,  for arbitrarily large E. In the (c,,c,)-plane, we define a stable region, 
producing a time-periodic asymptotic solution (the usual chevron solution) for all L. 
On the other hand, the unstable region produces non-time-periodic asymptotic 
solutions, for some t. In practice, the stability can be investigated for a given e (here 
~5 = 48), and the boundary stability will hopefully not depend much on L (the 
dependence of the unstable solution on L will be treated separately). A simple 
approximate stability condition, found numerically, is 

The stability diagram appears in figure 13 (see also Albarede & Monkewitz 1992). 
qm(cl, c,) < 0.55. (6.4) 

The instabilities observed in experiments and in the GL model are essentially 
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FIGURE 14. The weakly unstable chevron. The following representations are used: (a) lines 
Re(A(f,z)exp(i(c,+Ac,)t))~{ - 1,O. 1 )  (pseudo flow visualization), (b) functions i+ a(i,rk), where 
z;r = -(L/2)(k-1)/5 and k~{1 ,2 ,3 ,4 ,5} ,  ( c )  functions Z + ( q , M , G ) ( f , F )  at time i,. Parameters: 
L = 48, c, = - 1.59 (adapted), c, = -0.3, c2 = -2, d i  = 0.2, dz = 0.5, Ac, = 0.5. 

identical. The experimental instability results from qm((cl, c2) (Re))  crossing the 
stability boundary in the (c,,c,)-plane, at Re = Re,  and for L / d  large enough. In 
experiments (Albarede 1991, figure EXP 19), as well as in the GL model, the instability 
appears when the spanwise wavenumber (or the shedding angle) becomes too large. 

For (cl, c2) crossing the stability boundary, we found from numerical simulations 
that the results were essentially independent of the precise path of (cl, CJ, at least within 
the area of physical interest. We give results only for a particular path. 

Solutions are illustrated by the following representation : 
(a) lines, defined by real (X(f,~)exp(i0.5i)) = 0, simulate smoke wire flow 
visualizations (c, is adapted, the exponential factor represents vortex advection, as 
explained in 6 3.2) ; 
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FIGURE 15. The wavy chevron. Same representations as those of figure 14. Dashed line: reverse 
modulational chevron. Parameters: = 48, c,, = - 1.46 (adapted), c1 = -0.175, c2 = -2, df = 0.2, 
dr = 0.5, Ac, = 0.5. 

(b) plots i-t M(i ,  F) stand for velocity recordings; 
(c) plots ~ 4 ( q , M , ~ ) ( f , z )  represent the solution at a given time. 

We identified different modes, according to the transient and asymptotic patterns. 

(i) 'Robust chevron' (no figure: this classical situation is not illustrated) 

settle shortly after the Landau transient (of which the rescaled duration is unity). 

(ii) 'Weakly unstable chevron' (figure 14) 
The vicinity of the stability boundary causes a transient waviness, modulating the 

oblique plane waves. This waviness is decaying and does not persist in the asymptotic 
solution. 

In the stable region, well away from the stability boundary, oblique plane waves 
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FIGURE 16. The dislocated chevron. Same representations as those of figure 15. Parameters: 
t = 4 8 ,  c,=-1.41 (adapted), c,=-0.12, c , = - 2 , d ~ = 0 . 2 , d ~ = 0 . 5 , A c 0 = 0 . 5 .  

(iii) 'Wavy chevron' (figure 15) 
Once in the unstable region, the waviness persists in the asymptotic state. The 

amplitude of waviness is larger near the central phase shock. Isophase lines of waviness 
also form a chevron, but pointing in a direction opposite to that of the basic chevron 
(see figure 15n)! During the transient, the phase shocks propagating from the ends 
towards the centre are actually replaced by nodes. These nodes eventually collide with, 
and annihilate, each other. The asymptotic solution is time-quasi-periodic. 

(iv) 'Dislocated chevron' (figure 16) 
The nodes already observed in the wavy chevron solution transient persist in the 

asymptotic state. They create one central cell and two lateral cells. The central cell has 
a greater frequency and a lower wavenumber than the lateral cells. The central cell 
frequency is slightly lower than the parallel shedding frequency. 
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FIGURE 17. The split wake. Same representations as those of figure 15, except that f, = 80 is not the 
final time. Parameters: = 48, co = - 1.38 (adapted), c1 = -0.1, c2 = -2, d f =  0.2, d l =  0.5, 
Ac, = 0.5. 

(v) ‘Split wake’ (figure 17) 
The wake is split into three or two cells. Any two neighbouring cells are separated 

by a node, having identical frequencies, and are in phase opposition (repulsive lock-in). 
We now have some ‘defect dynamics’: nodes may move, collide, oscillate, show erratic 
motion, etc. 

We limited our exploration of the GL equation to the phase-diffusion stable case 
(1 + c! c, > 0). We have time-quasi-periodic or weakly chaotic phenomena. The phase- 
diffusion unstable case (1 +c,c, < 0), treated by Shraiman et al. (1992), is strongly 
chaotic, and we do not know if it can be applied to the cylinder wake. 
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FIGURE 18. Variation of three important spanwise wavenumbers, along the line c2 = -2, for (c,,c,) 
crossing the stability boundary. qm(cl, cJ: wavenumber selected by the zero boundary conditions. 
qct(c,,c2): if q > qcl, the plane wave A ,  is linearly unstable with respect to large-wavelength 
perturbations. qc(cl, c2): if 4 > qc, the plane wave is unstable in the numerical simulation of the GL 
equation with periodic boundary conditions and L = 4x19. Numerical parameters: co adapted, 
dT = 0.2, d r  = e/96. 

6.3. Elements of a stability theory 
The linear analysis of the (infinite) plane wave stability was performed by Kuramoto 
(1984). We recall some of his results: (i) if 1 + c, c, < 0, then all plane waves are 
unstable; (ii) in the opposite case, plane waves with 

are linearly unstable with respect to large-wavelength perturbations. All plane waves 
are obviously marginally unstable with respect to a uniform phase shift, that is an 
infinite-wavelength perturbation. 

For each mode, we calculate qcl(cl, c,) given by (6.5) and the selected wavenumber 
qo(c,, c,). Quite obviously, the selected oblique plane wave becomes linearly unstable 
as (cl, c,) moves towards the unstable region. 

But qcl is not fully relevant, because it concerns the linear stability of an infinite plane 
wave subjected to arbitrarily large-wavelength perturbations, whereas we are interested 
in the nonlinear stability of a finite plane wave. The consequence of a finite length is 
that perturbations with a wavelength roughly greater than t cannot develop: this is a 
stabilizing effect. 

We numerically investigated the stability of finite plane waves (with wavenumbers q), 
in a periodic medium of size 4n/q (for a typical q x 0.5, 4 n / q  x 24). The stability 
condition is < qc, where qc(cl, c,) is determined numerically by successive trials. The 
three quantities qm, qcl, qc are plotted against c1 (c, is constant) in figure 18. The result 
confirms that the chevron solution instability is very similar to the instability of each 
finite wave constituting the chevron. The effect of the finite length is mostly a stabilizing 
effect. 

A more advanced theory for the chevron solution stability can be sketched: 
the departure from the chevron solution would be governed, by, again, a 
Ginzburg-Landau equation. The linear growth rate results from Kuramoto’s (1984) 
linear study. The nonlinear coefficient would ensure saturation only in the wavy 
chevron mode, but not in further stages, where a subcritical bifurcation would have to 
be considered. The initial condition is the strong and random waviness resulting from 
the Landau amplification of the small initial noise: this explains why the transient of 



216 P.  Albarede and M .  Provansal 

0 

240 

4 2  -k El2 

t 

FIGURE 19. The split wake. Lines Re(~(i,(T,exp(i(c,+Ac,) T))E{ - 1,O. 1) (pseudo flow visualization). 
Parameters: cu = - 1.41 (adapted), c, = -0.12, c2 = -2, d f=  0.2, d z =  0.5, Aco = 0.5. (a) 3 cells, 
e = 60; (b)  3 or 5 cells, L = 84; (c )  5 cells, = 96. 

a given mode contains decaying patterns of the next more unstable mode. Zero 
boundary conditions, again, would produce the reverse modulational chevron formed 
by the isophase lines of waviness, in the wavy chevron mode (see figure 15a). 

6.4. The finite-length eflect it! the unstable case 
The stable chevron solution is independent of E,  as soon as the condition (2.28) is 
realized. In the unstable case, there must be a most unstable mode, with some finite 
wavelength. The unstable solution will be independent of L, for L much greater than 
the most unstable wavelength. Accordingly, we investigated the evolution of the 
dislocated chevron solution when varying t (see figure 19). 

We define L ( N )  as the length above which the Nth pair of nodes is (symmetrically) 
created when increasing L. The onset of the first mode can be considered as the creation 
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of a pair of bound nodes: hence, L(1) = 7c (K is the minimum length of any cell). For 
,C > L(1), a stable, then wavy, chevron is observed. The wavy chevron breaks and 
produces a pair of free nodes, for L = L(2). We notice that the GL model also applies 
with boundary conditions taken between any two nodes. Therefore, L(2) is the 
maximum size of any cell (a bigger cell would break). By recurrence for all N 2 2, L ( N )  
exists, and 

(2N- 1) 71: 6 L ( N )  d ( N -  1) L(2). 

The exact process of node creation is illuminated by numerical simulations, 
presented for the case (c1,c2) = (-0.12, -2), which bears some generality in the 
vicinity of the stability boundary. Let us start from a symmetrical situation with a 
central cell and, possibly, lateral cells. The increase of L is mainly supported by the 
central cell. Eventually, it becomes greater than E(2) and produces a pair of free nodes, 
a pair of lateral cells, and a new central cell. The process can be reiterated, and it is an 
analogue of Russian dolls: the inner cell breaks, leaving two separate lateral cells, and 
a new cell is created at midspan, and so on. 

With the numerical parameters (co, c,, c,) = (- 1.41, -0.12,2), df = 0.2, d r  = 0.5, 
the minimum size of the central cell was about 13 ; 33 < L(2) < 36,60 < L(3) < 96, and 
N = 6 at E = 240. In practice, if L 2 L(3), the free nodes have oscillatory movements 
or disappear intermittently, so that the above process is much disturbed. The solution 
(specifically the existence of nodes) can be sensitive to initial conditions. Lateral cells 
form dissymetrical chevrons, evolving continuously with increasing L from isolated 
finite plane waves to symmetrical chevrons. More precisely, every finite plane wave is 
shorter than 10, while the total length of a lateral cell is 10, 12, 16, 19 for = 33, 48, 
60, 240. 

6.5. A comparison between experiments and the model for the unstable large-L case 
We have shown that an increase of L(Re, L / d ) ,  as well as a variation of (c l ,  c2)(Re), can 
induce instability and node creation. In experiments, the instability develops when 
decreasing Re to below Re,, and Re, does not depend on L / d  (Williamson 1989): 
hence, the transition can be caused only by the variation of (c1,c2) with Re. For a 
typical Re < Re,, e.g. Re = 58.5, the Kuramoto lengthscale given by (4.8) is about 
2.2d. The stable (or wavy) chevron flow should be obtained for 7c < L < L(2) 
or 7 < L / d <  73; the split wake should be obtained for L(2) < L <  L(3) or 
79 $ L / d  < 132. 

Williamson’s (1989) range was 70 < L / d  < 240, and, for Re < Re,, he has identified 
only the dislocated chevron. He did not report the stable chevron (for L / d  small 
enough), although we know for certain from our small-L experiments that this mode 
exists; neither did he report the split wake: this mode remains to be observed. The 
wavy chevron can be recognized on Williamson’s (1989) figure 7 (b) ,  with many features 
of the numerical solution (see above), in particular the reverse modulational chevron. 

Konig et al. (1990) observed various transitions in large-L situations, depending on 
the end configuration. In the case of end plates, the wake has two eigenmodes, 
corresponding to parallel shedding and oblique shedding. In the case of wind-tunnel 
wall boundary layers, the wake has the same eigenmodes, plus one that does not 
obviously appear in our exploration of the GL model. 

7. Conclusion 
Most of the three-dimensional and time-quasi-periodic phenomena (summarized in 

figure 20) have been explained at least qualitatively by means of the GL model. 
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FIGURE 20. Summary of discussed wake patterns and GL model solutions. 

Fundamental wake parameters are the Reynolds number Re and the aspect ratio L/d .  
They participate in the GL model through E(Re, L / d )  and (cl, cz)(Re) .  The latter 
dependence is particularly important when it causes a secondary instability, leading to 
the dislocated chevron. The GL model gives a unified vision of very different facts, and 
illuminates many old controversies. It is at least a good framework for presenting 
experimental results pertaining to weakly three-dimensional wakes (or possibly shear 
flows) with supercritial absolute instabilities. In the course of this study, some 
mathematical features of the GL equation have been discovered. 

At least one wake parameter, say the dimensionless fetch F/d,  must be introduced 
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to represent the end configuration, since different flows can be observed with identical 
parameters (Re, L/d) , ,  but different end conditions. The GL model is not ideally suited 
to represent the fully three-dimensional end configuration. In particular, the boundary 
conditions must be applied with care. Also, the second mode seems to be sustained by 
the end-plate boundary layers, through some unidentified energy transfer process. End 
effects can be suppressed by considering the wake of a torus, which has no ends 
(Leweke et al. 1993). However, the correct understanding of the end flow, and its 
interaction with the rest of the flow remains a difficult but important problem. 

The model can be improved in many ways, in order to get a better representation of 
experimental results. For example, the streamwise coordinate can be implemented 
(Rossi, Huerre & Redekopp 1989, Park & Redekopp 1992). The quality of experimental 
results will have to be improved if further developments are to be undertaken. In 
particular, the accuracy of the rescaled model coefficients should be reduced to 0.1, 
and the variations with the Reynolds number should be determined. 

We thank F. Abetino and J. Minelli for their technical assistance and L. Boyer, T. 
Leweke, P. Monkewitz for fruitful discussions. This work has benefited from the 
financial support of the EEC under contract No. SC1-0212-C(TT) and Action 
Incitative en Mecanique des Fluides DPST8 Ministere de 1’Enseignement Superieur et 
de la Recherche. 

Appendix. The link between the complex amplitude A and the observable 
fields 

We propose the following expansion for any component of the velocity field: 

u( t ,x ,y , z ,Re)  = V,,(x,y ,Re)+A(t ,z ,Re)  V,,(x,y,Re)+A*V,, 

+ A2<, + AA* K1 + A*2V,, + . . 
or, more explicitly: 

The reality of u implies 
‘n,. np = Cz, n; 

The yz,,n2 are the basic flow (for n, = n2 = 0) ,  the linear modes (n,+n,  = l ) ,  and 
nonlinear modes (n, +n,  > l), of the plane wake. Nonlinear modes are generated by 
the quadratic nonlinearity of the momentum Navier-Stokes equation. 

This representation has the following qualities. 
(i) If (A1 does not depend on time, then the time-average of the velocity component 

(A 3) 

For a finite amplitude, the average flow differs from the basic flow, which is a typical 
nonlinear effect. 

(ii) Harmonics are included. In particular, if A is a linear combination of 
exp (iw, t) and exp (iw, t), then the linear combinations of w1 and w2 are also produced, 
in agreement with observations of nonlinear mixing reported in Albarede (1989). 

is 
( 0 )  = C IA12n K . n *  

n a o  
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(iii) In a time-periodic regime, the vortex street is alternating, and this can be 
accounted for by the fundamental streamwise velocity component vanishing at y = 0: 

(A 4) 
(The subscript s means the x-component.) 

Since the velocity measurements are most often performed on a segment 
{(xo,yo, z) ,  - L / 2  < z < +L/2} and for some component K, i E ( x , y ,  z}, it is convenient 
(and possible) to impose 

(A 5 )  

For i = x, because of (A 4), yo must not be zero (otherwise, the normalization is 
impossible). Omitting the harmonics in (A 1)  and using (A 5) ,  we obtain a simplified 
expression, 

(A 6 )  

The amplitude of the velocity fluctuation as a function of all space coordinates and 
Re involves the variations of V,o(x,y ,  Re),  according to (A 1). Some results of Mathis 
(1983) are indeed measurements of the dependence (x, Re) + V,,,(S, 0, Re).  This 
problem was also recently treated by Jenffer er al. (1992). 

V,,,(x, 0, Re) = 0. 

KO&, yo, Re) = 1 /2. 

q ( t .  xo,yo, z ,  Re) = ~ o t ( . x o , y o .  Re) + Re [A(t ,  =, Re)] .  
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